Source code for gluoncv.model_zoo.action_recognition.actionrec_resnetv1b

# pylint: disable=line-too-long,too-many-lines,missing-docstring,arguments-differ,unused-argument
import mxnet as mx
from mxnet import init
from mxnet.gluon import nn
from mxnet.gluon.nn import HybridBlock
from ..resnetv1b import resnet18_v1b, resnet34_v1b, resnet50_v1b, resnet101_v1b, resnet152_v1b

__all__ = ['resnet18_v1b_sthsthv2', 'resnet34_v1b_sthsthv2', 'resnet50_v1b_sthsthv2',
           'resnet101_v1b_sthsthv2', 'resnet152_v1b_sthsthv2', 'resnet18_v1b_kinetics400',
           'resnet34_v1b_kinetics400', 'resnet50_v1b_kinetics400', 'resnet101_v1b_kinetics400',
           'resnet152_v1b_kinetics400', 'resnet50_v1b_ucf101', 'resnet50_v1b_hmdb51',
           'resnet50_v1b_custom', 'resnet18_v1b_custom']

class ActionRecResNetV1b(HybridBlock):
    r"""ResNet models for video action recognition
    Deep Residual Learning for Image Recognition, CVPR 2016
    https://arxiv.org/abs/1512.03385

    Parameters
    ----------
    depth : int, default is 50.
        Depth of ResNet, from {18, 34, 50, 101, 152}.
    nclass : int
        Number of classes in the training dataset.
    pretrained_base : bool or str, optional, default is True.
        Load pretrained base network, the extra layers are randomized. Note that
        if pretrained is `True`, this has no effect.
    partial_bn : bool, default False.
        Freeze all batch normalization layers during training except the first layer.
    dropout_ratio : float, default is 0.5.
        The dropout rate of a dropout layer.
        The larger the value, the more strength to prevent overfitting.
    init_std : float, default is 0.001.
        Standard deviation value when initialize the dense layers.
    num_segments : int, default is 1.
        Number of segments used to evenly divide a video.
    num_crop : int, default is 1.
        Number of crops used during evaluation, choices are 1, 3 or 10.

    Input: a single video frame or N images from N segments when num_segments > 1
    Output: a single predicted action label
    """
    def __init__(self, depth, nclass, pretrained_base=True,
                 dropout_ratio=0.5, init_std=0.01,
                 num_segments=1, num_crop=1,
                 partial_bn=False, **kwargs):
        super(ActionRecResNetV1b, self).__init__()

        if depth == 18:
            pretrained_model = resnet18_v1b(pretrained=pretrained_base, **kwargs)
            self.expansion = 1
        elif depth == 34:
            pretrained_model = resnet34_v1b(pretrained=pretrained_base, **kwargs)
            self.expansion = 1
        elif depth == 50:
            pretrained_model = resnet50_v1b(pretrained=pretrained_base, **kwargs)
            self.expansion = 4
        elif depth == 101:
            pretrained_model = resnet101_v1b(pretrained=pretrained_base, **kwargs)
            self.expansion = 4
        elif depth == 152:
            pretrained_model = resnet152_v1b(pretrained=pretrained_base, **kwargs)
            self.expansion = 4
        else:
            print('No such ResNet configuration for depth=%d' % (depth))

        self.dropout_ratio = dropout_ratio
        self.init_std = init_std
        self.feat_dim = 512 * self.expansion
        self.num_segments = num_segments
        self.num_crop = num_crop

        with self.name_scope():
            self.conv1 = pretrained_model.conv1
            self.bn1 = pretrained_model.bn1
            self.relu = pretrained_model.relu
            self.maxpool = pretrained_model.maxpool
            self.layer1 = pretrained_model.layer1
            self.layer2 = pretrained_model.layer2
            self.layer3 = pretrained_model.layer3
            self.layer4 = pretrained_model.layer4
            self.avgpool = pretrained_model.avgpool
            self.flat = pretrained_model.flat
            self.drop = nn.Dropout(rate=self.dropout_ratio)
            self.output = nn.Dense(units=nclass, in_units=self.feat_dim,
                                   weight_initializer=init.Normal(sigma=self.init_std))
            self.output.initialize()

    def hybrid_forward(self, F, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = self.flat(x)
        x = self.drop(x)

        # segmental consensus
        x = F.reshape(x, shape=(-1, self.num_segments * self.num_crop, self.feat_dim))
        x = F.mean(x, axis=1)

        x = self.output(x)
        return x

[docs]def resnet18_v1b_sthsthv2(nclass=174, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet18 model trained on Something-Something-V2 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=18, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.5, init_std=0.01) if pretrained: from ..model_store import get_model_file model.load_parameters(get_model_file('resnet18_v1b_sthsthv2', tag=pretrained, root=root)) from ...data import SomethingSomethingV2Attr attrib = SomethingSomethingV2Attr() model.classes = attrib.classes model.collect_params().reset_ctx(ctx) return model
[docs]def resnet34_v1b_sthsthv2(nclass=174, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet34 model trained on Something-Something-V2 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=34, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.5, init_std=0.01) if pretrained: from ..model_store import get_model_file model.load_parameters(get_model_file('resnet34_v1b_sthsthv2', tag=pretrained, root=root)) from ...data import SomethingSomethingV2Attr attrib = SomethingSomethingV2Attr() model.classes = attrib.classes model.collect_params().reset_ctx(ctx) return model
[docs]def resnet50_v1b_sthsthv2(nclass=174, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet50 model trained on Something-Something-V2 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=50, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.5, init_std=0.01) if pretrained: from ..model_store import get_model_file model.load_parameters(get_model_file('resnet50_v1b_sthsthv2', tag=pretrained, root=root)) from ...data import SomethingSomethingV2Attr attrib = SomethingSomethingV2Attr() model.classes = attrib.classes model.collect_params().reset_ctx(ctx) return model
[docs]def resnet101_v1b_sthsthv2(nclass=174, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet101 model trained on Something-Something-V2 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=101, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.5, init_std=0.01) if pretrained: from ..model_store import get_model_file model.load_parameters(get_model_file('resnet101_v1b_sthsthv2', tag=pretrained, root=root)) from ...data import SomethingSomethingV2Attr attrib = SomethingSomethingV2Attr() model.classes = attrib.classes model.collect_params().reset_ctx(ctx) return model
[docs]def resnet152_v1b_sthsthv2(nclass=174, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet152 model trained on Something-Something-V2 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=152, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.5, init_std=0.01) if pretrained: from ..model_store import get_model_file model.load_parameters(get_model_file('resnet152_v1b_sthsthv2', tag=pretrained, root=root)) from ...data import SomethingSomethingV2Attr attrib = SomethingSomethingV2Attr() model.classes = attrib.classes model.collect_params().reset_ctx(ctx) return model
[docs]def resnet18_v1b_kinetics400(nclass=400, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet18 model trained on Kinetics400 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=18, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.5, init_std=0.01) if pretrained: from ..model_store import get_model_file model.load_parameters(get_model_file('resnet18_v1b_kinetics400', tag=pretrained, root=root)) from ...data import Kinetics400Attr attrib = Kinetics400Attr() model.classes = attrib.classes model.collect_params().reset_ctx(ctx) return model
[docs]def resnet34_v1b_kinetics400(nclass=400, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet34 model trained on Kinetics400 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=34, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.5, init_std=0.01) if pretrained: from ..model_store import get_model_file model.load_parameters(get_model_file('resnet34_v1b_kinetics400', tag=pretrained, root=root)) from ...data import Kinetics400Attr attrib = Kinetics400Attr() model.classes = attrib.classes model.collect_params().reset_ctx(ctx) return model
[docs]def resnet50_v1b_kinetics400(nclass=400, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet50 model trained on Kinetics400 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=50, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.5, init_std=0.01) if pretrained: from ..model_store import get_model_file model.load_parameters(get_model_file('resnet50_v1b_kinetics400', tag=pretrained, root=root)) from ...data import Kinetics400Attr attrib = Kinetics400Attr() model.classes = attrib.classes model.collect_params().reset_ctx(ctx) return model
[docs]def resnet101_v1b_kinetics400(nclass=400, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet101 model trained on Kinetics400 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=101, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.5, init_std=0.01) if pretrained: from ..model_store import get_model_file model.load_parameters(get_model_file('resnet101_v1b_kinetics400', tag=pretrained, root=root)) from ...data import Kinetics400Attr attrib = Kinetics400Attr() model.classes = attrib.classes model.collect_params().reset_ctx(ctx) return model
[docs]def resnet152_v1b_kinetics400(nclass=400, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet152 model trained on Kinetics400 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=152, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.5, init_std=0.01) if pretrained: from ..model_store import get_model_file model.load_parameters(get_model_file('resnet152_v1b_kinetics400', tag=pretrained, root=root)) from ...data import Kinetics400Attr attrib = Kinetics400Attr() model.classes = attrib.classes model.collect_params().reset_ctx(ctx) return model
[docs]def resnet50_v1b_ucf101(nclass=101, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet50 model trained on UCF101 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=50, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.9, init_std=0.001) if pretrained: from ..model_store import get_model_file model.load_parameters(get_model_file('resnet50_v1b_ucf101', tag=pretrained, root=root)) from ...data import UCF101Attr attrib = UCF101Attr() model.classes = attrib.classes model.collect_params().reset_ctx(ctx) return model
[docs]def resnet50_v1b_hmdb51(nclass=51, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet50 model trained on HMDB51 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=50, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.9, init_std=0.001) if pretrained: from ..model_store import get_model_file model.load_parameters(get_model_file('resnet50_v1b_hmdb51', tag=pretrained, root=root)) from ...data import HMDB51Attr attrib = HMDB51Attr() model.classes = attrib.classes model.collect_params().reset_ctx(ctx) return model
[docs]def resnet50_v1b_custom(nclass=400, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), use_kinetics_pretrain=True, **kwargs): r"""ResNet50 model customized for any dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. use_kinetics_pretrain : bool, default True. Whether to load pretrained weights on Kinetics400 dataset as model initialization. """ model = ActionRecResNetV1b(depth=50, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.5, init_std=0.01) if use_kinetics_pretrain and not pretrained: from gluoncv.model_zoo import get_model kinetics_model = get_model('resnet50_v1b_kinetics400', nclass=400, pretrained=True) source_params = kinetics_model.collect_params() target_params = model.collect_params() assert len(source_params.keys()) == len(target_params.keys()) pretrained_weights = [] for layer_name in source_params.keys(): pretrained_weights.append(source_params[layer_name].data()) for i, layer_name in enumerate(target_params.keys()): if i + 2 == len(source_params.keys()): # skip the last dense layer break target_params[layer_name].set_data(pretrained_weights[i]) model.collect_params().reset_ctx(ctx) return model
[docs]def resnet18_v1b_custom(nclass=400, pretrained=False, pretrained_base=True, use_tsn=False, partial_bn=False, use_kinetics_pretrain=True, num_segments=1, num_crop=1, root='~/.mxnet/models', ctx=mx.cpu(), **kwargs): r"""ResNet18 model trained on Kinetics400 dataset. Parameters ---------- nclass : int. Number of categories in the dataset. pretrained : bool or str. Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. pretrained_base : bool or str, optional, default is True. Load pretrained base network, the extra layers are randomized. Note that if pretrained is `True`, this has no effect. ctx : Context, default CPU. The context in which to load the pretrained weights. root : str, default $MXNET_HOME/models Location for keeping the model parameters. num_segments : int, default is 1. Number of segments used to evenly divide a video. num_crop : int, default is 1. Number of crops used during evaluation, choices are 1, 3 or 10. partial_bn : bool, default False. Freeze all batch normalization layers during training except the first layer. """ model = ActionRecResNetV1b(depth=18, nclass=nclass, partial_bn=partial_bn, num_segments=num_segments, num_crop=num_crop, dropout_ratio=0.5, init_std=0.01) if use_kinetics_pretrain and not pretrained: from gluoncv.model_zoo import get_model kinetics_model = get_model('resnet18_v1b_kinetics400', nclass=400, pretrained=True) source_params = kinetics_model.collect_params() target_params = model.collect_params() assert len(source_params.keys()) == len(target_params.keys()) pretrained_weights = [] for layer_name in source_params.keys(): pretrained_weights.append(source_params[layer_name].data()) for i, layer_name in enumerate(target_params.keys()): if i + 2 == len(source_params.keys()): # skip the last dense layer break target_params[layer_name].set_data(pretrained_weights[i]) model.collect_params().reset_ctx(ctx) return model