Source code for gluoncv.loss

# pylint: disable=arguments-differ
"""Custom losses.
Losses are subclasses of gluon.loss.Loss which is a HybridBlock actually.
"""
from __future__ import absolute_import
from mxnet import gluon
from mxnet import nd
from mxnet.gluon.loss import Loss, _apply_weighting, _reshape_like

__all__ = ['FocalLoss', 'SSDMultiBoxLoss', 'YOLOV3Loss',
           'MixSoftmaxCrossEntropyLoss', 'ICNetLoss', 'MixSoftmaxCrossEntropyOHEMLoss',
           'SegmentationMultiLosses', 'DistillationSoftmaxCrossEntropyLoss', 'SiamRPNLoss']

[docs]class FocalLoss(Loss): """Focal Loss for inbalanced classification. Focal loss was described in https://arxiv.org/abs/1708.02002 Parameters ---------- axis : int, default -1 The axis to sum over when computing softmax and entropy. alpha : float, default 0.25 The alpha which controls loss curve. gamma : float, default 2 The gamma which controls loss curve. sparse_label : bool, default True Whether label is an integer array instead of probability distribution. from_logits : bool, default False Whether input is a log probability (usually from log_softmax) instead. batch_axis : int, default 0 The axis that represents mini-batch. weight : float or None Global scalar weight for loss. num_class : int Number of classification categories. It is required is `sparse_label` is `True`. eps : float Eps to avoid numerical issue. size_average : bool, default True If `True`, will take mean of the output loss on every axis except `batch_axis`. Inputs: - **pred**: the prediction tensor, where the `batch_axis` dimension ranges over batch size and `axis` dimension ranges over the number of classes. - **label**: the truth tensor. When `sparse_label` is True, `label`'s shape should be `pred`'s shape with the `axis` dimension removed. i.e. for `pred` with shape (1,2,3,4) and `axis = 2`, `label`'s shape should be (1,2,4) and values should be integers between 0 and 2. If `sparse_label` is False, `label`'s shape must be the same as `pred` and values should be floats in the range `[0, 1]`. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as label. For example, if label has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: loss tensor with shape (batch_size,). Dimensions other than batch_axis are averaged out. """ def __init__(self, axis=-1, alpha=0.25, gamma=2, sparse_label=True, from_logits=False, batch_axis=0, weight=None, num_class=None, eps=1e-12, size_average=True, **kwargs): super(FocalLoss, self).__init__(weight, batch_axis, **kwargs) self._axis = axis self._alpha = alpha self._gamma = gamma self._sparse_label = sparse_label if sparse_label and (not isinstance(num_class, int) or (num_class < 1)): raise ValueError("Number of class > 0 must be provided if sparse label is used.") self._num_class = num_class self._from_logits = from_logits self._eps = eps self._size_average = size_average
[docs] def hybrid_forward(self, F, pred, label, sample_weight=None): """Loss forward""" if not self._from_logits: pred = F.sigmoid(pred) if self._sparse_label: one_hot = F.one_hot(label, self._num_class) else: one_hot = label > 0 pt = F.where(one_hot, pred, 1 - pred) t = F.ones_like(one_hot) alpha = F.where(one_hot, self._alpha * t, (1 - self._alpha) * t) loss = -alpha * ((1 - pt) ** self._gamma) * F.log(F.minimum(pt + self._eps, 1)) loss = _apply_weighting(F, loss, self._weight, sample_weight) if self._size_average: return F.mean(loss, axis=self._batch_axis, exclude=True) else: return F.sum(loss, axis=self._batch_axis, exclude=True)
def _as_list(arr): """Make sure input is a list of mxnet NDArray""" if not isinstance(arr, (list, tuple)): return [arr] return arr
[docs]class SSDMultiBoxLoss(gluon.Block): r"""Single-Shot Multibox Object Detection Loss. .. note:: Since cross device synchronization is required to compute batch-wise statistics, it is slightly sub-optimal compared with non-sync version. However, we find this is better for converged model performance. Parameters ---------- negative_mining_ratio : float, default is 3 Ratio of negative vs. positive samples. rho : float, default is 1.0 Threshold for trimmed mean estimators. This is the smooth parameter for the L1-L2 transition. lambd : float, default is 1.0 Relative weight between classification and box regression loss. The overall loss is computed as :math:`L = loss_{class} + \lambda \times loss_{loc}`. min_hard_negatives : int, default is 0 Minimum number of negatives samples. """ def __init__(self, negative_mining_ratio=3, rho=1.0, lambd=1.0, min_hard_negatives=0, **kwargs): super(SSDMultiBoxLoss, self).__init__(**kwargs) self._negative_mining_ratio = max(0, negative_mining_ratio) self._rho = rho self._lambd = lambd self._min_hard_negatives = max(0, min_hard_negatives)
[docs] def forward(self, cls_pred, box_pred, cls_target, box_target): """Compute loss in entire batch across devices. Parameters ---------- cls_pred : mxnet.nd.NDArray Predicted classes. box_pred : mxnet.nd.NDArray Predicted bounding-boxes. cls_target : mxnet.nd.NDArray Ground-truth classes. box_target : mxnet.nd.NDArray Ground-truth bounding-boxes. Returns ------- tuple of NDArrays sum_losses : array with containing the sum of class prediction and bounding-box regression loss. cls_losses : array of class prediction loss. box_losses : array of box regression L1 loss. """ # require results across different devices at this time cls_pred, box_pred, cls_target, box_target = [_as_list(x) \ for x in (cls_pred, box_pred, cls_target, box_target)] # cross device reduction to obtain positive samples in entire batch num_pos = [] for cp, bp, ct, bt in zip(*[cls_pred, box_pred, cls_target, box_target]): pos_samples = (ct > 0) num_pos.append(pos_samples.sum()) num_pos_all = sum([p.asscalar() for p in num_pos]) if num_pos_all < 1 and self._min_hard_negatives < 1: # no positive samples and no hard negatives, return dummy losses cls_losses = [nd.sum(cp * 0) for cp in cls_pred] box_losses = [nd.sum(bp * 0) for bp in box_pred] sum_losses = [nd.sum(cp * 0) + nd.sum(bp * 0) for cp, bp in zip(cls_pred, box_pred)] return sum_losses, cls_losses, box_losses # compute element-wise cross entropy loss and sort, then perform negative mining cls_losses = [] box_losses = [] sum_losses = [] for cp, bp, ct, bt in zip(*[cls_pred, box_pred, cls_target, box_target]): pred = nd.log_softmax(cp, axis=-1) pos = ct > 0 cls_loss = -nd.pick(pred, ct, axis=-1, keepdims=False) rank = (cls_loss * (pos - 1)).argsort(axis=1).argsort(axis=1) hard_negative = rank < nd.maximum(self._min_hard_negatives, pos.sum(axis=1) * self._negative_mining_ratio).expand_dims(-1) # mask out if not positive or negative cls_loss = nd.where((pos + hard_negative) > 0, cls_loss, nd.zeros_like(cls_loss)) cls_losses.append(nd.sum(cls_loss, axis=0, exclude=True) / max(1., num_pos_all)) bp = _reshape_like(nd, bp, bt) box_loss = nd.abs(bp - bt) box_loss = nd.where(box_loss > self._rho, box_loss - 0.5 * self._rho, (0.5 / self._rho) * nd.square(box_loss)) # box loss only apply to positive samples box_loss = box_loss * pos.expand_dims(axis=-1) box_losses.append(nd.sum(box_loss, axis=0, exclude=True) / max(1., num_pos_all)) sum_losses.append(cls_losses[-1] + self._lambd * box_losses[-1]) return sum_losses, cls_losses, box_losses
[docs]class YOLOV3Loss(Loss): """Losses of YOLO v3. Parameters ---------- batch_axis : int, default 0 The axis that represents mini-batch. weight : float or None Global scalar weight for loss. """ def __init__(self, batch_axis=0, weight=None, **kwargs): super(YOLOV3Loss, self).__init__(weight, batch_axis, **kwargs) self._sigmoid_ce = gluon.loss.SigmoidBinaryCrossEntropyLoss(from_sigmoid=False) self._l1_loss = gluon.loss.L1Loss()
[docs] def hybrid_forward(self, F, objness, box_centers, box_scales, cls_preds, objness_t, center_t, scale_t, weight_t, class_t, class_mask): """Compute YOLOv3 losses. Parameters ---------- objness : mxnet.nd.NDArray Predicted objectness (B, N), range (0, 1). box_centers : mxnet.nd.NDArray Predicted box centers (x, y) (B, N, 2), range (0, 1). box_scales : mxnet.nd.NDArray Predicted box scales (width, height) (B, N, 2). cls_preds : mxnet.nd.NDArray Predicted class predictions (B, N, num_class), range (0, 1). objness_t : mxnet.nd.NDArray Objectness target, (B, N), 0 for negative 1 for positive, -1 for ignore. center_t : mxnet.nd.NDArray Center (x, y) targets (B, N, 2). scale_t : mxnet.nd.NDArray Scale (width, height) targets (B, N, 2). weight_t : mxnet.nd.NDArray Loss Multipliers for center and scale targets (B, N, 2). class_t : mxnet.nd.NDArray Class targets (B, N, num_class). It's relaxed one-hot vector, i.e., (1, 0, 1, 0, 0). It can contain more than one positive class. class_mask : mxnet.nd.NDArray 0 or 1 mask array to mask out ignored samples (B, N, num_class). Returns ------- tuple of NDArrays obj_loss: sum of objectness logistic loss center_loss: sum of box center logistic regression loss scale_loss: sum of box scale l1 loss cls_loss: sum of per class logistic loss """ # compute some normalization count, except batch-size denorm = F.cast( F.shape_array(objness_t).slice_axis(axis=0, begin=1, end=None).prod(), 'float32') weight_t = F.broadcast_mul(weight_t, objness_t) hard_objness_t = F.where(objness_t > 0, F.ones_like(objness_t), objness_t) new_objness_mask = F.where(objness_t > 0, objness_t, objness_t >= 0) obj_loss = F.broadcast_mul( self._sigmoid_ce(objness, hard_objness_t, new_objness_mask), denorm) center_loss = F.broadcast_mul(self._sigmoid_ce(box_centers, center_t, weight_t), denorm * 2) scale_loss = F.broadcast_mul(self._l1_loss(box_scales, scale_t, weight_t), denorm * 2) denorm_class = F.cast( F.shape_array(class_t).slice_axis(axis=0, begin=1, end=None).prod(), 'float32') class_mask = F.broadcast_mul(class_mask, objness_t) cls_loss = F.broadcast_mul(self._sigmoid_ce(cls_preds, class_t, class_mask), denorm_class) return obj_loss, center_loss, scale_loss, cls_loss
class SoftmaxCrossEntropyLoss(Loss): r"""SoftmaxCrossEntropyLoss with ignore labels Parameters ---------- axis : int, default -1 The axis to sum over when computing softmax and entropy. sparse_label : bool, default True Whether label is an integer array instead of probability distribution. from_logits : bool, default False Whether input is a log probability (usually from log_softmax) instead of unnormalized numbers. weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. ignore_label : int, default -1 The label to ignore. size_average : bool, default False Whether to re-scale loss with regard to ignored labels. """ def __init__(self, sparse_label=True, batch_axis=0, ignore_label=-1, size_average=True, **kwargs): super(SoftmaxCrossEntropyLoss, self).__init__(None, batch_axis, **kwargs) self._sparse_label = sparse_label self._ignore_label = ignore_label self._size_average = size_average def hybrid_forward(self, F, pred, label): """Compute loss""" softmaxout = F.SoftmaxOutput( pred, label.astype(pred.dtype), ignore_label=self._ignore_label, multi_output=self._sparse_label, use_ignore=True, normalization='valid' if self._size_average else 'null') if self._sparse_label: loss = -F.pick(F.log(softmaxout), label, axis=1, keepdims=True) else: label = _reshape_like(F, label, pred) loss = -F.sum(F.log(softmaxout) * label, axis=-1, keepdims=True) loss = F.where(label.expand_dims(axis=1) == self._ignore_label, F.zeros_like(loss), loss) return F.mean(loss, axis=self._batch_axis, exclude=True)
[docs]class SegmentationMultiLosses(SoftmaxCrossEntropyLoss): """2D Cross Entropy Loss with Multi-Loss""" def __init__(self, size_average=True, ignore_label=-1, **kwargs): super(SegmentationMultiLosses, self).__init__(size_average, ignore_label, **kwargs)
[docs] def hybrid_forward(self, F, *inputs, **kwargs): pred1, pred2, pred3, label = tuple(inputs) loss1 = super(SegmentationMultiLosses, self).hybrid_forward(F, pred1, label, **kwargs) loss2 = super(SegmentationMultiLosses, self).hybrid_forward(F, pred2, label, **kwargs) loss3 = super(SegmentationMultiLosses, self).hybrid_forward(F, pred3, label, **kwargs) loss = loss1 + loss2 + loss3 return loss
[docs]class MixSoftmaxCrossEntropyLoss(SoftmaxCrossEntropyLoss): """SoftmaxCrossEntropyLoss2D with Auxiliary Loss Parameters ---------- aux : bool, default True Whether to use auxiliary loss. aux_weight : float, default 0.2 The weight for aux loss. ignore_label : int, default -1 The label to ignore. """ def __init__(self, aux=True, mixup=False, aux_weight=0.2, ignore_label=-1, **kwargs): super(MixSoftmaxCrossEntropyLoss, self).__init__( ignore_label=ignore_label, **kwargs) self.aux = aux self.mixup = mixup self.aux_weight = aux_weight def _aux_forward(self, F, pred1, pred2, label, **kwargs): """Compute loss including auxiliary output""" loss1 = super(MixSoftmaxCrossEntropyLoss, self). \ hybrid_forward(F, pred1, label, **kwargs) loss2 = super(MixSoftmaxCrossEntropyLoss, self). \ hybrid_forward(F, pred2, label, **kwargs) return loss1 + self.aux_weight * loss2 def _aux_mixup_forward(self, F, pred1, pred2, label1, label2, lam): """Compute loss including auxiliary output""" loss1 = self._mixup_forward(F, pred1, label1, label2, lam) loss2 = self._mixup_forward(F, pred2, label1, label2, lam) return loss1 + self.aux_weight * loss2 def _mixup_forward(self, F, pred, label1, label2, lam, sample_weight=None): if not self._from_logits: pred = F.log_softmax(pred, self._axis) if self._sparse_label: loss1 = -F.pick(pred, label1, axis=self._axis, keepdims=True) loss2 = -F.pick(pred, label2, axis=self._axis, keepdims=True) loss = lam * loss1 + (1 - lam) * loss2 else: label1 = _reshape_like(F, label1, pred) label2 = _reshape_like(F, label2, pred) loss1 = -F.sum(pred*label1, axis=self._axis, keepdims=True) loss2 = -F.sum(pred*label2, axis=self._axis, keepdims=True) loss = lam * loss1 + (1 - lam) * loss2 loss = _apply_weighting(F, loss, self._weight, sample_weight) return F.mean(loss, axis=self._batch_axis, exclude=True)
[docs] def hybrid_forward(self, F, *inputs, **kwargs): """Compute loss""" if self.aux: if self.mixup: return self._aux_mixup_forward(F, *inputs, **kwargs) else: return self._aux_forward(F, *inputs, **kwargs) else: if self.mixup: return self._mixup_forward(F, *inputs, **kwargs) else: return super(MixSoftmaxCrossEntropyLoss, self). \ hybrid_forward(F, *inputs, **kwargs)
[docs]class ICNetLoss(SoftmaxCrossEntropyLoss): """Weighted SoftmaxCrossEntropyLoss2D for ICNet training Parameters ---------- weights : tuple, default (0.4, 0.4, 1.0) The weight for cascade label guidance. ignore_label : int, default -1 The label to ignore. """ def __init__(self, weights=(0.4, 0.4, 1.0), height=None, width=None, crop_size=480, ignore_label=-1, **kwargs): super(ICNetLoss, self).__init__(ignore_label=ignore_label, **kwargs) self.weights = weights self.height = height if height is not None else crop_size self.width = width if width is not None else crop_size def _weighted_forward(self, F, *inputs): label = inputs[4] loss = [] for i in range(len(inputs) - 1): scale_pred = F.contrib.BilinearResize2D(inputs[i], height=self.height, width=self.width) loss.append(super(ICNetLoss, self).hybrid_forward(F, scale_pred, label)) return loss[0] + self.weights[0] * loss[1] + \ self.weights[1] * loss[2] + self.weights[2] * loss[3]
[docs] def hybrid_forward(self, F, *inputs): """Compute loss""" return self._weighted_forward(F, *inputs)
class SoftmaxCrossEntropyOHEMLoss(Loss): r"""SoftmaxCrossEntropyLoss with ignore labels Parameters ---------- axis : int, default -1 The axis to sum over when computing softmax and entropy. sparse_label : bool, default True Whether label is an integer array instead of probability distribution. from_logits : bool, default False Whether input is a log probability (usually from log_softmax) instead of unnormalized numbers. weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. ignore_label : int, default -1 The label to ignore. size_average : bool, default False Whether to re-scale loss with regard to ignored labels. """ def __init__(self, sparse_label=True, batch_axis=0, ignore_label=-1, size_average=True, **kwargs): super(SoftmaxCrossEntropyOHEMLoss, self).__init__(None, batch_axis, **kwargs) self._sparse_label = sparse_label self._ignore_label = ignore_label self._size_average = size_average def hybrid_forward(self, F, pred, label): """Compute loss""" softmaxout = F.contrib.SoftmaxOHEMOutput( pred, label.astype(pred.dtype), ignore_label=self._ignore_label, multi_output=self._sparse_label, use_ignore=True, normalization='valid' if self._size_average else 'null', thresh=0.6, min_keep=256) loss = -F.pick(F.log(softmaxout), label, axis=1, keepdims=True) loss = F.where(label.expand_dims(axis=1) == self._ignore_label, F.zeros_like(loss), loss) return F.mean(loss, axis=self._batch_axis, exclude=True)
[docs]class MixSoftmaxCrossEntropyOHEMLoss(SoftmaxCrossEntropyOHEMLoss): """SoftmaxCrossEntropyLoss2D with Auxiliary Loss Parameters ---------- aux : bool, default True Whether to use auxiliary loss. aux_weight : float, default 0.2 The weight for aux loss. ignore_label : int, default -1 The label to ignore. """ def __init__(self, aux=True, aux_weight=0.2, ignore_label=-1, **kwargs): super(MixSoftmaxCrossEntropyOHEMLoss, self).__init__( ignore_label=ignore_label, **kwargs) self.aux = aux self.aux_weight = aux_weight def _aux_forward(self, F, pred1, pred2, label, **kwargs): """Compute loss including auxiliary output""" loss1 = super(MixSoftmaxCrossEntropyOHEMLoss, self). \ hybrid_forward(F, pred1, label, **kwargs) loss2 = super(MixSoftmaxCrossEntropyOHEMLoss, self). \ hybrid_forward(F, pred2, label, **kwargs) return loss1 + self.aux_weight * loss2
[docs] def hybrid_forward(self, F, *inputs, **kwargs): """Compute loss""" if self.aux: return self._aux_forward(F, *inputs, **kwargs) else: return super(MixSoftmaxCrossEntropyOHEMLoss, self). \ hybrid_forward(F, *inputs, **kwargs)
[docs]class DistillationSoftmaxCrossEntropyLoss(gluon.HybridBlock): """SoftmaxCrossEntrolyLoss with Teacher model prediction Parameters ---------- temperature : float, default 1 The temperature parameter to soften teacher prediction. hard_weight : float, default 0.5 The weight for loss on the one-hot label. sparse_label : bool, default True Whether the one-hot label is sparse. """ def __init__(self, temperature=1, hard_weight=0.5, sparse_label=True, **kwargs): super(DistillationSoftmaxCrossEntropyLoss, self).__init__(**kwargs) self._temperature = temperature self._hard_weight = hard_weight with self.name_scope(): self.soft_loss = gluon.loss.SoftmaxCrossEntropyLoss(sparse_label=False, **kwargs) self.hard_loss = gluon.loss.SoftmaxCrossEntropyLoss(sparse_label=sparse_label, **kwargs)
[docs] def hybrid_forward(self, F, output, label, soft_target): # pylint: disable=unused-argument """Compute loss""" if self._hard_weight == 0: return (self._temperature ** 2) * self.soft_loss(output / self._temperature, soft_target) elif self._hard_weight == 1: return self.hard_loss(output, label) else: soft_loss = (self._temperature ** 2) * self.soft_loss(output / self._temperature, soft_target) hard_loss = self.hard_loss(output, label) return (1 - self._hard_weight) * soft_loss + self._hard_weight * hard_loss
class HeatmapFocalLoss(Loss): """Focal loss for heatmaps. Parameters ---------- from_logits : bool Whether predictions are after sigmoid or softmax. batch_axis : int Batch axis. weight : float Loss weight. """ def __init__(self, from_logits=False, batch_axis=0, weight=None, **kwargs): super(HeatmapFocalLoss, self).__init__(weight, batch_axis, **kwargs) self._from_logits = from_logits def hybrid_forward(self, F, pred, label): """Loss forward""" if not self._from_logits: pred = F.sigmoid(pred) pos_inds = label == 1 neg_inds = label < 1 neg_weights = F.power(1 - label, 4) pos_loss = F.log(pred) * F.power(1 - pred, 2) * pos_inds neg_loss = F.log(1 - pred) * F.power(pred, 2) * neg_weights * neg_inds # normalize num_pos = F.clip(F.sum(pos_inds), a_min=1, a_max=1e30) pos_loss = F.sum(pos_loss) neg_loss = F.sum(neg_loss) return -(pos_loss + neg_loss) / num_pos class MaskedL1Loss(Loss): r"""Calculates the mean absolute error between `label` and `pred` with `mask`. .. math:: L = \sum_i \vert ({label}_i - {pred}_i) * {mask}_i \vert / \sum_i {mask}_i. `label`, `pred` and `mask` can have arbitrary shape as long as they have the same number of elements. The final loss is normalized by the number of non-zero elements in mask. Parameters ---------- weight : float or None Global scalar weight for loss. batch_axis : int, default 0 The axis that represents mini-batch. Inputs: - **pred**: prediction tensor with arbitrary shape - **label**: target tensor with the same size as pred. - **sample_weight**: element-wise weighting tensor. Must be broadcastable to the same shape as pred. For example, if pred has shape (64, 10) and you want to weigh each sample in the batch separately, sample_weight should have shape (64, 1). Outputs: - **loss**: loss tensor with shape (batch_size,). Dimenions other than batch_axis are averaged out. """ def __init__(self, weight=None, batch_axis=0, **kwargs): super(MaskedL1Loss, self).__init__(weight, batch_axis, **kwargs) def hybrid_forward(self, F, pred, label, mask, sample_weight=None): label = _reshape_like(F, label, pred) loss = F.abs(label * mask - pred * mask) loss = _apply_weighting(F, loss, self._weight, sample_weight) norm = F.sum(mask).clip(1, 1e30) return F.sum(loss) / norm
[docs]class SiamRPNLoss(gluon.HybridBlock): r"""Weighted l1 loss and cross entropy loss for SiamRPN training Parameters ---------- batch_size : int, default 128 training batch size per device (CPU/GPU). """ def __init__(self, batch_size=128, **kwargs): super(SiamRPNLoss, self).__init__(**kwargs) self.conf_loss = gluon.loss.SoftmaxCrossEntropyLoss() self.h = 17 self.w = 17 self.b = batch_size self.loc_c = 10 self.cls_c = 5
[docs] def weight_l1_loss(self, F, pred_loc, label_loc, loss_weight): """Compute weight_l1_loss""" pred_loc = pred_loc.reshape((self.b, 4, -1, self.h, self.w)) diff = F.abs((pred_loc - label_loc)) diff = F.sum(diff, axis=1).reshape((self.b, -1, self.h, self.w)) loss = diff * loss_weight return F.sum(loss)/self.b
[docs] def get_cls_loss(self, F, pred, label, select): """Compute SoftmaxCrossEntropyLoss""" if len(select) == 0: return 0 pred = F.gather_nd(pred, select.reshape(1, -1)) label = F.gather_nd(label.reshape(-1, 1), select.reshape(1, -1)).reshape(-1) return self.conf_loss(pred, label).mean()
[docs] def cross_entropy_loss(self, F, pred, label, pos_index, neg_index): """Compute cross_entropy_loss""" pred = pred.reshape(self.b, 2, self.loc_c//2, self.h, self.h) pred = F.transpose(pred, axes=((0, 2, 3, 4, 1))) pred = pred.reshape(-1, 2) label = label.reshape(-1) loss_pos = self.get_cls_loss(F, pred, label, pos_index) loss_neg = self.get_cls_loss(F, pred, label, neg_index) return loss_pos * 0.5 + loss_neg * 0.5
[docs] def hybrid_forward(self, F, cls_pred, loc_pred, label_cls, pos_index, neg_index, label_loc, label_loc_weight): """Compute loss""" loc_loss = self.weight_l1_loss(F, loc_pred, label_loc, label_loc_weight) cls_loss = self.cross_entropy_loss(F, cls_pred, label_cls, pos_index, neg_index) return cls_loss, loc_loss