Source code for gluoncv.data.pascal_aug.segmentation
"""Pascal Augmented VOC Semantic Segmentation Dataset."""
import os
import scipy.io
from PIL import Image
from ..segbase import SegmentationDataset
[docs]class VOCAugSegmentation(SegmentationDataset):
    """Pascal VOC Augmented Semantic Segmentation Dataset.
    Parameters
    ----------
    root : string
        Path to VOCdevkit folder. Default is '$(HOME)/mxnet/datasplits/voc'
    split: string
        'train' or 'val'
    transform : callable, optional
        A function that transforms the image
    Examples
    --------
    >>> from mxnet.gluon.data.vision import transforms
    >>> # Transforms for Normalization
    >>> input_transform = transforms.Compose([
    >>>     transforms.ToTensor(),
    >>>     transforms.Normalize([.485, .456, .406], [.229, .224, .225]),
    >>> ])
    >>> # Create Dataset
    >>> trainset = gluoncv.data.VOCAugSegmentation(split='train', transform=input_transform)
    >>> # Create Training Loader
    >>> train_data = gluon.data.DataLoader(
    >>>     trainset, 4, shuffle=True, last_batch='rollover',
    >>>     num_workers=4)
    """
    TRAIN_BASE_DIR = 'VOCaug/dataset/'
    NUM_CLASS = 21
    CLASSES = ("background", "airplane", "bicycle", "bird", "boat", "bottle",
               "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse",
               "motorcycle", "person", "potted-plant", "sheep", "sofa", "train",
               "tv")
    def __init__(self, root=os.path.expanduser('~/.mxnet/datasets/voc'),
                 split='train', mode=None, transform=None, **kwargs):
        super(VOCAugSegmentation, self).__init__(root, split, mode, transform, **kwargs)
        # train/val/test splits are pre-cut
        _voc_root = os.path.join(root, self.TRAIN_BASE_DIR)
        _mask_dir = os.path.join(_voc_root, 'cls')
        _image_dir = os.path.join(_voc_root, 'img')
        if split == 'train':
            _split_f = os.path.join(_voc_root, 'trainval.txt')
        elif split == 'val':
            _split_f = os.path.join(_voc_root, 'val.txt')
        else:
            raise RuntimeError('Unknown dataset split: {}'.format(split))
        self.images = []
        self.masks = []
        with open(os.path.join(_split_f), "r") as lines:
            for line in lines:
                _image = os.path.join(_image_dir, line.rstrip('\n')+".jpg")
                assert os.path.isfile(_image)
                self.images.append(_image)
                _mask = os.path.join(_mask_dir, line.rstrip('\n')+".mat")
                assert os.path.isfile(_mask)
                self.masks.append(_mask)
        assert (len(self.images) == len(self.masks))
    def __getitem__(self, index):
        img = Image.open(self.images[index]).convert('RGB')
        target = self._load_mat(self.masks[index])
        # synchrosized transform
        if self.mode == 'train':
            img, target = self._sync_transform(img, target)
        elif self.mode == 'val':
            img, target = self._val_sync_transform(img, target)
        else:
            raise RuntimeError('unknown mode for dataloader: {}'.format(self.mode))
        # general resize, normalize and toTensor
        if self.transform is not None:
            img = self.transform(img)
        return img, target
    def _load_mat(self, filename):
        mat = scipy.io.loadmat(filename, mat_dtype=True, squeeze_me=True,
                               struct_as_record=False)
        mask = mat['GTcls'].Segmentation
        return Image.fromarray(mask)
    def __len__(self):
        return len(self.images)
    @property
    def classes(self):
        """Category names."""
        return type(self).CLASSES