.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "build/examples_datasets/hmdb51.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_build_examples_datasets_hmdb51.py: Prepare the HMDB51 Dataset ============================= `HMDB51 `_ is an action recognition dataset, collected from various sources, mostly from movies, and a small proportion from public databases such as the Prelinger archive, YouTube and Google videos. The dataset contains 6,766 clips divided into 51 action categories, each containing a minimum of 100 clips. This tutorial will go through the steps of preparing this dataset for GluonCV. .. image:: http://serre-lab.clps.brown.edu/wp-content/uploads/2012/08/HMDB_snapshot1.png :width: 350 px .. image:: http://serre-lab.clps.brown.edu/wp-content/uploads/2012/08/HMDB_snapshot2.png :width: 350 px Setup ----- We need the following two files from HMDB51: the dataset and the official train/test split. ============================================== ====== Filename Size ============================================== ====== hmdb51_org.rar 2.1 GB test_train_splits.rar 200 KB ============================================== ====== The easiest way to download and unpack these files is to download helper script :download:`hmdb51.py<../../../scripts/datasets/hmdb51.py>` and run the following command: .. code-block:: bash python hmdb51.py This script will help you download the dataset, unpack the data from compressed files, decode the videos to frames, and generate the training files for you. All the files will be stored at ``~/.mxnet/datasets/hmdb51`` by default. If you want to use more workers to speed up, please specify ``--num-worker`` to a larger number. .. note:: You need at least 60 GB disk space to download and extract the dataset. SSD (Solid-state disks) is preferred over HDD because of faster speed. You may need to install ``unrar`` by ``sudo apt install unrar``. You may need to install ``rarfile``, ``Cython``, ``mmcv`` by ``pip install rarfile Cython mmcv``. The data preparation process may take a while. The total time to prepare the dataset depends on your Internet speed and disk performance. For example, it takes about 30min on an AWS EC2 instance with EBS. .. GENERATED FROM PYTHON SOURCE LINES 54-62 Read with GluonCV ----------------- The prepared dataset can be loaded with utility class :py:class:`gluoncv.data.HMDB51` directly. In this tutorial, we provide three examples to read data from the dataset, (1) load one frame per video; (2) load one clip per video, the clip contains five consecutive frames; (3) load three clips evenly per video, each clip contains 12 frames. .. GENERATED FROM PYTHON SOURCE LINES 65-67 We first show an example that randomly reads 25 videos each time, randomly selects one frame per video and performs center cropping. .. GENERATED FROM PYTHON SOURCE LINES 67-83 .. code-block:: default from gluoncv.data import HMDB51 from mxnet.gluon.data import DataLoader from mxnet.gluon.data.vision import transforms from gluoncv.data.transforms import video transform_train = transforms.Compose([ video.VideoCenterCrop(size=224), video.VideoToTensor() ]) # Default location of the data is stored on ~/.mxnet/datasets/hmdb51. # You need to specify ``setting`` and ``root`` for HMDB51 if you decoded the video frames into a different folder. train_dataset = HMDB51(train=True, transform=transform_train) train_data = DataLoader(train_dataset, batch_size=25, shuffle=True) .. GENERATED FROM PYTHON SOURCE LINES 84-86 We can see the shape of our loaded data as below. ``extra`` indicates if we select multiple crops or multiple segments from a video. Here, we only pick one frame per video, so the ``extra`` dimension is 1. .. GENERATED FROM PYTHON SOURCE LINES 86-91 .. code-block:: default for x, y in train_data: print('Video frame size (batch, extra, channel, height, width):', x.shape) print('Video label:', y.shape) break .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Video frame size (batch, extra, channel, height, width): (25, 1, 3, 224, 224) Video label: (25,) .. GENERATED FROM PYTHON SOURCE LINES 92-93 Let's plot several training samples. index 0 is image, 1 is label .. GENERATED FROM PYTHON SOURCE LINES 93-97 .. code-block:: default from gluoncv.utils import viz viz.plot_image(train_dataset[500][0].squeeze().transpose((1,2,0))*255.0) # dive viz.plot_image(train_dataset[2500][0].squeeze().transpose((1,2,0))*255.0) # shoot_bow .. rst-class:: sphx-glr-horizontal * .. image:: /build/examples_datasets/images/sphx_glr_hmdb51_001.png :alt: hmdb51 :class: sphx-glr-multi-img * .. image:: /build/examples_datasets/images/sphx_glr_hmdb51_002.png :alt: hmdb51 :class: sphx-glr-multi-img .. GENERATED FROM PYTHON SOURCE LINES 98-100 Here is the second example that randomly reads 25 videos each time, randomly selects one clip per video and performs center cropping. A clip can contain N consecutive frames, e.g., N=5. .. GENERATED FROM PYTHON SOURCE LINES 100-104 .. code-block:: default train_dataset = HMDB51(train=True, new_length=5, transform=transform_train) train_data = DataLoader(train_dataset, batch_size=25, shuffle=True) .. GENERATED FROM PYTHON SOURCE LINES 105-107 We can see the shape of our loaded data as below. Now we have another ``depth`` dimension which indicates how many frames in each clip (a.k.a, the temporal dimension). .. GENERATED FROM PYTHON SOURCE LINES 107-112 .. code-block:: default for x, y in train_data: print('Video frame size (batch, extra, channel, depth, height, width):', x.shape) print('Video label:', y.shape) break .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Video frame size (batch, extra, channel, depth, height, width): (25, 1, 3, 5, 224, 224) Video label: (25,) .. GENERATED FROM PYTHON SOURCE LINES 113-114 Let's plot one training sample with 5 consecutive video frames. index 0 is image, 1 is label .. GENERATED FROM PYTHON SOURCE LINES 114-139 .. code-block:: default from matplotlib import pyplot as plt # subplot 1 for video frame 1 fig = plt.figure() fig.add_subplot(1,5,1) frame1 = train_dataset[500][0][0,:,0,:,:].transpose((1,2,0)).asnumpy()*255.0 plt.imshow(frame1.astype('uint8')) # subplot 2 for video frame 2 fig.add_subplot(1,5,2) frame2 = train_dataset[500][0][0,:,1,:,:].transpose((1,2,0)).asnumpy()*255.0 plt.imshow(frame2.astype('uint8')) # subplot 3 for video frame 3 fig.add_subplot(1,5,3) frame3 = train_dataset[500][0][0,:,2,:,:].transpose((1,2,0)).asnumpy()*255.0 plt.imshow(frame3.astype('uint8')) # subplot 4 for video frame 4 fig.add_subplot(1,5,4) frame4 = train_dataset[500][0][0,:,3,:,:].transpose((1,2,0)).asnumpy()*255.0 plt.imshow(frame4.astype('uint8')) # subplot 5 for video frame 5 fig.add_subplot(1,5,5) frame5 = train_dataset[500][0][0,:,4,:,:].transpose((1,2,0)).asnumpy()*255.0 plt.imshow(frame5.astype('uint8')) # display plt.show() .. image:: /build/examples_datasets/images/sphx_glr_hmdb51_003.png :alt: hmdb51 :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 140-142 The last example is that we randomly read 25 videos each time, select three clips evenly per video and performs center cropping. A clip contains 12 consecutive frames. .. GENERATED FROM PYTHON SOURCE LINES 142-146 .. code-block:: default train_dataset = HMDB51(train=True, new_length=12, num_segments=3, transform=transform_train) train_data = DataLoader(train_dataset, batch_size=25, shuffle=True) .. GENERATED FROM PYTHON SOURCE LINES 147-149 We can see the shape of our loaded data as below. Now the ``extra`` dimension is 3, which indicates we have three segments for each video. .. GENERATED FROM PYTHON SOURCE LINES 149-154 .. code-block:: default for x, y in train_data: print('Video frame size (batch, extra, channel, depth, height, width):', x.shape) print('Video label:', y.shape) break .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Video frame size (batch, extra, channel, depth, height, width): (25, 3, 3, 12, 224, 224) Video label: (25,) .. GENERATED FROM PYTHON SOURCE LINES 155-156 There are many different ways to load the data. We refer the users to read the argument list for more information. .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 24.761 seconds) .. _sphx_glr_download_build_examples_datasets_hmdb51.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: hmdb51.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: hmdb51.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_